Academy Mourns its Founding President
Dr. Howard Morgan

In the 2nd issue of CV Network cover story “From The President”, Dr Morgan concluded his article with:

“The challenge for the Academy and its members is to adopt a mind-set which continuously raises the question of how new and existing knowledge can be translated into prevention, improved diagnosis and therapy of cardiovascular disease. This approach offers the hope of a continued reduction in morbidity and mortality due to cardiovascular disease.”

Howard E. Morgan, 81, Lewisburg PA passed away on March 2, 2009 in Estero, Florida. Howard was born on October 8, 1927 and was the only child of Mayor Lyle V. Morgan and Ethel Bailey Morgan of LeRoy, IL. He attended elementary and high school in LeRoy and graduated in 1945. He enrolled in Illinois Wesleyan University in 1944-45.

He is survived by his wife, Donna of 21 years. In addition to his wife, he is survived by one daughter and son-in-law, Patricia L. and Nelson Wehler of East Berlin, PA and two grandsons, Jonathan and Geoffrey Morgan of Ann Arbor, MI. Howard was preceded in death by two sons, Stephen L. and Howard L. Morgan.

Howard was internationally regarded as one of the greatest experimental cardiologist of the 20th century. His strong commitment to excellence in heart research is a clear vision for blending the basic sciences with clinical cardiology, and his deep devotion to helping your cardiovascular scientists reach their potential, demonstrated his outstanding ability in the creative organization of medical research.

By taking college courses during summer and holidays and in the 4th year of high school, he was able to move directly to the Johns Hopkins School of Medicine, where he received his medical degree in 1949. He completed his internship and residency at Vanderbilt University and held faculty appointments in Vanderbilt’s Dept. of Physiology and the Howard Hughes Medical Institute from 1954-67. Dr. Morgan developed the isolated perfused working heart preparation from adult rats that is used extensively in metabolic studies worldwide. Morgan wrote briefly of his training: “Because I entered physiological research after eight years of clinical training, research, and practice in obstetrics and gynecology, my training was entirely as a postdoctoral fellow. Charles R. Park served as my preceptor and guided me into studies of the effects of insulin on glucose uptake and sugar transport. With a solid background obtained in Park’s laboratory, I later was able to undertake the new areas of investigation that have characterized the remainder of my career.”
In 1967, he founded the Dept. of Physiology at the Milton S. Hershey Medical Center of The Pennsylvania State University. His research between 1987-98 at the Sigfried and Janet Weis Center for Research, Geisinger Clinic has focused on the intracellular signaling systems that are responsible for accelerated growth and hypertrophy of the heart. He described his work as follows:

"Initial studies dealt with the mechanism of action of insulin on glucose uptake and the nature of glucose transport. Insulin was found to accelerate glucose transport, a stereospecific, saturable process in the cell membrane. A kinetic model of sugar transport was proposed, based on studies in rabbit erythrocytes. This model and its mathematical description have been used by many other investigators in characterizing transport phenomena. Experiments measuring the rate of glycogen utilization led to investigation of the allosteric control of phosphorylase a and b and to the discovery that phosphorylase b activity was increased by 5'-AMP [adenosine 5'- monophosphate] and inhibited by ATP [adenosine triphosphate] and G-6-P [glucose 6-phosphate]. This mechanism of allosteric control accounted for the differential effects of anoxia and glucagon and for acceleration of glycogen utilization in working hearts."

"My interest in the effects of heart work on cardiac metabolism led to development of the isolated perfused working rat heart that has been used extensively both in our laboratory and elsewhere for study of the effects of mechanical performance on carbohydrate, fat, and protein metabolism. In this model, perfusion medium is introduced into the left atrium over a range of atrial filling pressures and is pumped against a variable outflow resistance. With this model, myocardial oxygen consumption was found to depend on the aortic pressure to which the heart was exposed; greater oxygen consumption was accompanied by faster utilization of oxidative substrates."

"During the next phase of my research career, my interest shifted to identification of factors that control growth of the heart and that can lead to cardiac hypertrophy. Initiation of peptide chains on myocardial ribosomes was found to become a ratecontrolling step during in vitro perfusion and to be accelerated by insulin, fatty acids, and other noncarbohydrate substrates, leucine, increased cardiac work, and exposure to higher aortic pressure. A rigorous method for estimation of rates of protein synthesis was developed that depended on measurements of the specific activities of phenylalanyl-tRNA. Protein degradation also was identified as a site of control of protein turnover that is affected by insulin, diabetes, energy availability, noncarbohydrate substrates, leucine, cardiac work, and increased aortic pressure. The factor that links cardiac work to faster rates of protein synthesis and slower proteolysis appears to be stretch of the ventricular wall, because these effects could be observed in hearts arrested with tetradoxorin and containing a ventricular drain. In these preparations, an increase in aortic pressure stretched the ventricular wall, accelerated protein synthesis, and inhibited proteolysis. These events appear to represent early changes in the hypertrophy process."

"After longer periods of exposure to pressure overload or to thyrotoxicosis in vivo, we found that content of cardiac RNA increased and accounted for much of the increment in protein synthesis. Since ribosomal RNA constitutes about eighty-five percent of cardiac RNA, these changes indicated that net ribosome production was increased, either by acceleration of rRNA transcription or processing or by inhibition of rRNA degradation."

He wrote more than 250 scientific publications. His work was named three times as a “Citation Classic”, a paper with more than 500 citations in published research for each article.

Dr. Morgan was President of the American Heart Association 1987-88, President of the International Society for Heart Research 1983-86, and President of the American Physiological Society 1985-86. He was Founding President of the International Academy of Cardiovascular Sciences 1996-2005. He served as Coordinator of the U.S./U.S.S.R Exchange program dealing with cardiovascular biology and medicine for 20 years. He was a member of Institute of Medicine of the National Academy of Sciences. He received the Medal of Merit (the highest honour) from the International Academy of Cardiovascular Sciences. He was also the recipient of the Abigail A. Geisinger Award. Dr. Morgan was the Evan Pugh Professor of Physiology, Emeritus, of Pennsylvania State University and Senior Vice President for Research, Emeritus, Geisinger Clinic and was a consultant to the Reynolds Foundation, Whitaker Foundation and the Bugher Foundation.

Dr. Morgan will be missed by many. He was a great scientist, wonderful father and a very loving husband.

Richard S. Sharpe, Managing Consultant, Cardiovascular Clinical Research Program Donald W. Reynolds Foundation said:

“All of us associated with the Cardiovascular Clinical Research Program at the Donald W. Reynolds Foundation will miss Howard. He was a good friend and played a key role in establishing and managing the program, under which $157 million has been invested in translational research devoted to the treatment and prevention of atherosclerotic heart disease.”

Roberto Bolli, M.D., Professor of Medicine, Physiology, and Biophysics; Chief, Division of Cardiology; Director, Institute of Molecular Cardiology; and Vice–Chair for Research, Department of Medicine at the University of Louisville KY wrote:

“It is with great sadness that I have learned of the death of Dr. Howard E. Morgan. As a former President of the International Society for Heart Research (1983-1986), Dr. Morgan played a pivotal role in the development of the ISHR in its early formative years, leaving a legacy of excellence and scholarship that has greatly benefited the entire membership. I am deeply honored to be a past recipient of the Morgan Award for Distinguished Achievements in Cardiovascular Sciences from the IACS. Although I have not directly interacted with Dr. Morgan, I have come to know his extraordinary scientific achievements that make him one of the giants in the basic cardiovascular research of the 20th century, particularly in the area of cardiac metabolism, signaling, and hypertrophy. He is also known for developing the isolated perfused working heart preparation that is extensively used in metabolic studies world wide.

Dr. Morgan’s ability to emerge as a leader has been remarkable> He held leadership positions in all major cardiovascular science organizations, including the American Physiological Society (where he was President in 1985-1986), the American Heart Association (where he served as President in 1987-1988), the National Heart, Lung, and Blood Institute (where he served on the Advisory Council in 1979-1983). He served as Editor/Associate Editor of major journals such as the American Journal of Physiology, Physiological Reviews, and the Journal of Molecular and Cellular Cardiology. He was a member of the Institute of Medicine of the National Academy
In Memoriam

Howard E. Morgan, MD

by James T. Willerson, MD
President and Medical Director, Texas Heart Institute
President-Elect, International Academy of Cardiovascular Sciences

Howard E. Morgan, MD died on March 2, 2009 at 81 years of age. He was one of the most respected basic cardiovascular scientists of the 20th century. He and his close colleague, Dr. James R. Neely, developed and used the isolated, perfused, working-heart preparation from adult rats to elucidate basic metabolic and biochemical mechanisms involved in the normally functioning heart that are responsible for accelerated growth and hypertrophy during hypoxia. In the years since, many cardiovascular scientists have used this same working heart preparation to provide their own insights into fundamental metabolic processes that regulate the function of the heart.

He attended the Johns Hopkins School of Medicine where he received his medical degree in 1949. This was followed by a medical residency at Vanderbilt University. He held faculty appointments in Vanderbilt’s Department of Physiology and the Howard Hughes Medical Institute from 1954 to 1967. In 1967, he founded the Department of Physiology at Penn State College of Medicine. His subsequent career in basic research occurred at the Sigfred and Janet Weis Center for Research at the Geisinger Clinic. His work was named three times as a “Citation Classic,” i.e. a paper with more than 500 citations in published research. He was a no-nonsense and tireless cardiovascular scientist who influenced the work of countless others throughout the world working in cardiac metabolism.

He served as President of the American Heart Association from 1987-1988; President of the American Physiological Society, 1985-1986; President of the International Society for Heart Research, 1983-1986; and as the Founding President of the International Academy of Cardiovascular Sciences, 1996-2002. He was also the coordinator of the US-USSR Exchange Program for Cardiovascular Biology and Medicine for 20 years. He was a member of the Institute of Medicine of the National Academy of Sciences. He was intimately involved in the development of the Donald W. Reynolds Foundation support of cardiovascular translational research at selected centers in the United States and continuing to the present time. He was also a consultant to the Whitaker and the Bugher Foundations.

He and his colleagues trained a large number of basic cardiovascular scientists, many of whom went on to important leadership positions in cardiovascular science themselves. He was rigorously committed to excellence in cardiovascular research and to translating basic cardiovascular science advances into clinical cardiovascular medicine benefiting patients. He was a no-nonsense and tireless cardiovascular scientist who influenced the work of countless others throughout the world working in cardiac metabolism. His presence will be missed by all who work in cardiovascular medicine.
Jay Cohn to deliver 2nd Annual Harold Buchwald Memorial Public Lecture on Heart Health in Winnipeg on Sept. 25th, 2009

Dr. Naranjan Dhalla created an additional focus for Ivan Berkowitz as the “HEART HEALTH SCHOLAR”, a project for which Ivan has commenced to gather information. We plan on continuing our initiatives of Public Forums on Heart Health in Manitoba. On July 25/08, we confirmed support from the local Myles Robinson Memorial Heart Trust for long-term financial contribution for our focus in Manitoba on Prevention and Early Detection of Heart Disease. We recognized their support by honouring a founder and past president Harold Buchwald and plan to host an annual “Harold Buchwald Memorial Lecture”. For the 2nd Annual Harold Buchwald Memorial Lecture on Heart Health, we have invited Dr. Jay Cohn from the University of Minnesota where he leads The Rasmussen Center for Cardiovascular Disease Prevention.

Dr. Cohn's lecture will be

“A comprehensive community strategy to eliminate premature cardiovascular morbid events”.

If you are interested to attend at a LUNCHEON, please contact Ivan Berkowitz at (204) 228-3193 or ivan@mts.net

---

**LETTER FROM THE PUBLISHER**

Moving forward with *Experimental & Clinical Cardiology*....

Robert B Kalina, Publisher

*Experimental & Clinical Cardiology* is entering into its 14th year of publication... and thriving. The Journal is available open access on PubMed Central, widely read and referenced routinely. It continues to be the official journal of the International Academy of Cardiovascular Sciences and, as such, commands a high level of respect.

The fact that this journal is truly an international publication makes it a strong candidate for a combined print and online format – a first for a Pulsus publication. The present issue is the first one to utilize the new format – a combination of full papers and abstracts of papers that will be published open access on the Journal Web site at www.pulsus.com. We recognize the usefulness and importance of both journal formats and believe this hybrid model will be much stronger and have a much better reach.

We welcome your comments (pulsus@pulsus.com) on this change or any other aspect of the Journal.

At this time, I would like to take the opportunity to thank Professor Ostadal for his hard work and devotion to this very worthy and important publication.

---

Experimental & Clinical CARDIOLOGY

is now available on PubMed

[www.pubmed.gov](http://www.pubmed.gov)
The Heart Can Heal Itself

The case of Hannah Clark is thought to be the only one in the world where a child’s failing heart recovered enough for the donor organ to be removed, the British surgeons told reporters ahead of their report in The Lancet journal.

“The possibility of recovery of the heart is just like magic,” said Professor Magdi Yacoub of Imperial College London, President of the International Academy of Cardiovascular Sciences who treated Hannah from the beginning and co-authored the journal paper. “A heart which was not contracting at all at the time we put the new heart to be pumping next to it and take its work, now is functioning normally.” Hannah, now 16, suffered as a baby from severe heart failure due to cardiomyopathy, a problem with the muscle of the heart, and in July 1995, when she was two years old, doctors transplanted a donor heart next to hers. The new organ soon took over much of the functioning of her own heart and Hannah, from near Cardiff in Wales, began to recover. However, she suffered from a type of cancer known as EBV PTLD, a common side effect of the drugs given to transplant patients to stop their immune systems rejecting new organs. She was treated with chemotherapy and other drugs but the cancer kept returning. Doctors reduced her dosage of immunosuppression drugs to stem the disease, but as a result, her transplanted heart began to fail. In contrast however, her own heart recovered and began functioning normally.

In February 2006, the team decided to remove the donor organ so the immunosuppression could be stopped - something that had never been done before. Thirty-nine months later, Hannah has completely recovered from the cancer and her heart is functioning normally. Yacoub and the team responsible for her remarkable treatment said her case offers vital clues to the study of transplantation, heart recovery and malignant disease. The report’s co-author Victor Tsang, a consultant at Great Ormond Street children’s hospital in London, noted the research was also useful in the development of temporary artificial hearts for children suffering from cardiomyopathy. “It is possible for the patient’s own heart to make a full recovery if it is given adequate support to do so,” he said. “This is an important piece of knowledge as we are now gaining more experience with mechanical support for the failing heart in children.” Their success “shows that the heart can indeed repair itself if given the opportunity,” Douglas Zipes, a past president of the American College of Cardiology, told the Huffington Post. Miguel Uva, chairman of the European Society of Cardiology’s group on cardiovascular surgery, called Clark’s case “a miracle,” adding that it was rare for patients’ hearts to simply get better on their own.

Hannah has just completed her GCSE exams and is heading into the final two years of high school where she plans to study childcare. She goes out with friends, plays sport and has a part-time job working with animals. “I wouldn’t be here if it wasn’t for any of this,” she told reporters. “Thanks to this operation, I’ve now got a normal life just like all of my friends”. Hannah had to take about seven tablets morning and night for the immunosuppression treatment, went through several rounds of cancer treatment, suffered kidney failure and at one point was left barely able to breathe. At one point her family were told she would not survive the next 12 hours, and Yacoub praised her courage and that of her family, saying: “The lesson is - don’t give up.” Her father Paul told reporters: “It was very worrying and stressful, but we kept on, saying ‘come on Hannah, you can’t give up, you’ve got to keep going.’” Her mother Liz thanked the donor family whose five-month-old baby daughter provided the transplant heart, saying: “They lost a child, we’ve gained our child - how can I ever thank them?”
The International Academy of Cardiovascular Sciences held their 3rd World Congress along with the Sudden Death Meeting of the European Society of Cardiology – Working Group on Cardiovascular Pharmacology and Drug Therapy in Copenhagen, Denmark during June 18 and 19, 2009. More than 200 people attended this meeting. There were 8 Symposia Sessions (with 55 Speakers), one Young Investigators Award Competition (with 8 Speakers) and several poster presentations. The caliber of scientific talks was excellent and there was a high degree of enthusiasm for networking and exchanges.

**The Awards Ceremony was chaired by Dr. Naranjan Dhalla where 6 Awards of the Academy were presented.**

- Howard Morgan Award to Dipak Das by Grant Pierce
- Makoto Nagano Award to Ágnes Végh by Bohuslav Ostadal
- Norman Alpert Award to Stephen Schaffer by Pawan Singal
- Naranjan Dhalla Award to Hideo Baba by Makoto Nagano
- Lifetime Achievement Award to Stig Haunsø by Dennis McNamara
- Distinguished Service Award to Keld Kjeldsen by Prof. Karl Werdan

Dr. Nagano and Dr. Dhalla toasted the meeting chairs Keld Kjeldsen (2nd from left) and Stig Haunsø (right)

Delegates enjoying social activities at the end of the Copenhagen Conference.
Howard Morgan Award presented by the Academy to Dipak Das

Dipak K. Das, Ph.D., Sc.D., is a professor and director of the Cardiovascular Research Center at the University of Connecticut, School of Medicine in Farmington, Connecticut, U.S.A. Originally trained in biochemistry and molecular biology, Dr. Das is now a recognized leader in cardiovascular research. His research has focused on the cellular, biochemical and molecular basis of ischemic heart disease as well as redox signaling associated with such diseases process. He has over 500 peer-reviewed publications, over 100 review articles and book chapters and fifteen books.

Dr. Das is the editor-in-chief of the journal Antioxidant and Redox Signaling, which he established as one of the founding editors. He also served as associate editor of the American Journal of Physiology: Heat and Circulatory Physiology and consulting editor of Molecular and Cellular Biochemistry. Dr. Das serves on the editorial boards of many cardiology and free radical related journals.

Dr. Das has been the organizer of numerous national and international conferences including International Society of Heart Research and International Society of Free Radical Research. He is the co-founder of International Redox Network and serves as the current president of the International Society of Adaptive Medicine. He has chaired and lectured in numerous national and international conventions.

In recent years, Dr. Das has developed interest in nutrition and the healthy heart and performed extensive research on the effects of herbal and plant derived compounds in cardiovascular diseases. In this regard, his work on resveratrol and tocotrienol has been recognized throughout the world. He is also considered a spokesman for cardioprotective effects of red and white wines. In addition, he has examined the molecular mechanisms of cardioprotection with many other herbal and plant derived compounds.

Dr. Das's passion for plant-derived alternative medicine has made him believe that food can be used as medicine. He has established an Institute for Medicinal Food and Applied Nutrition in Jadavpur University, Kolkata, India. The main emphasis of this institute is to teach the century-old concept of Hippocrates, the father of Medicine, “let food be thy medicine” and explore the biochemical and molecular mechanisms of numerous plant and herbal drugs whose mechanisms of action remain unknown. Dr. Das plans to retire in the near future and devote his time fully to developing this institute.

Ágnes Végh presented with Makoto Nagano Award by Academy

Ágnes Végh (born in 1954, Nova) was educated in biology (1972-1977) at the Faculty of Natural Sciences of Attila József University in Szeged. She completed her postgraduate studies and obtained her Ph.D. at the Department of Pharmacology of Albert Szent-Györgyi Medical University, in 1981. Since then she has been working in the same Department first as a lecturer (1981-87), as a senior lecturer (1987-95), then as an associate professor (1995-99), and from 1999 as a full professor. Between 1992 and 1997 she was a Visiting Honorary Research Fellow at the University of Stratchclyde in Glasgow. She obtained scientific degrees as the Candidate of Medical Sciences in 1987, the Doctor of Science (D.Sc.) and the title of Med. Habil., in 1999. She was awarded in 1983 with the Fift Prize of Young Investigator Competition, and twenty years later, with the Medal and Award of the György Gábor Foundation by the Hungarian Cardiological Society. She was granted with Széchenyi Professorship between 1997 and 2001 by the Hungarian Government. Her primary scientific interests are the pathophysiology and pharmacology of heart diseases, such as the acute myocardial ischaemia and infarction, heart failure and cardiac arrhythmias. In the last twenty years her scientific interest focuses on the preconditioning-induced adaptation mechanisms with particular emphasis on the acute ischaemia and reperfusion-induced ventricular arrhythmias. Her research team made the first proposal for the involvement of nitric oxide in the cardioprotective effects of preconditioning, and that the protection against arrhythmias can be induced by cardiac pacing and by vigorous exercise. She has published more than 100 scientific papers, 17 book chapters and many abstracts. She acts as editor and reviewer at many scientific journals. She teaches pharmacology to undergraduate medical students and supervisor of four to five Ph.D. students per year. She is a member and council member of many Societies, including the Hungarian Cardiological Society (leader of the Experimental Working Group), Hungarian Pharmacological Society, Hungarian Physiological Society, British Pharmacological Society, American Physiological Society, etc. She is Fellow of the International Academy of Cardiovascular Sciences and the European Society of Cardiology. Between 1998 and 2004 she acted as a council member of the International Society for Heart Research European Section. She organized the 22nd ISHR-ES meeting in 2002, in Szeged.
Stephen Schaffer honoured with Academy Norman Alpert Award

Dr. Stephen Schaffer received his Ph.D. degree in biochemistry in 1971 from the University of Minnesota. After postdoctoral training at the University of Pennsylvania, he joined the faculty at Lehigh University and Hahnemann University before moving to the University of South Alabama, where he is presently professor of Pharmacology. For 8 years, he served as a member of the American Heart Association SE Regional Consortium study section. He has also served as an ad hoc member of several NIH Study sections. Dr. Schaffer has organized several international meetings and has served on the organizing committee of several other meetings. He has edited 7 books and 4 special issues, serves on the editorial boards of Molecular and Cellular Biochemistry and Amino Acids and has published over 150 original articles. His research interests include ischemia-reperfusion injury, the effects of diabetes and insulin on the heart and the cardiac effects of the sulfur-containing amino acid, taurine.

Dr. Schaffer’s work has been instrumental in establishing an important cytoprotective function for the sulfur-containing amino acid, taurine. In 1981 he discovered that taurine treated hearts were resistant to cellular damage caused by the calcium overload model known as the calcium paradox. His work later showed that taurine also played a key role in ischemic injury. Recently he reported that transgenic mice containing less than 0.1% of their normal taurine content develop a cardiomyopathy, which is characterized by defects in diastolic and systolic function and a reduction in cell size. These effects were traced to the influence of taurine on mitochondrial function. He recently discovered that taurine deficiency leads to a decrease in the expression of mitochondria encoded proteins, an effect that reduces the activity of the electron transport chain and enhances superoxide production by the mitochondria. Hence, taurine deficient cardiomyocytes become energy deficient, are subjected to oxidative stress and are at risk of undergoing apoptosis.

In 1985 his laboratory made the seminal discovery that a cardiomyopathy developed in a rat model of type 2 diabetes. Hearts from this model of type 2 diabetes exhibited defects in systolic and diastolic function, glucose metabolism, calcium transport and cell signaling. Interestingly, these hearts were also resistant to an ischemia-reperfusion insult. However, an increase in afterload pressure prevented the observed decline in infarct size. This finding prompted Dr. Schaffer’s laboratory to examine the effect of afterload pressure on the nondiseased heart. Not only did elevations in afterload pressure increase infarct size in the normal myocardium but also diminished the protection provided by ischemic and pharmacological preconditioning. One of the factors contributing to the pressure-mediated increase in infarct size is angiotensin II, which acts through several mechanisms to potentiate ischemic injury. The other factor appears to be the stimulation in the oxidative burst during reperfusion.

Although the effects of elevated afterload pressure provide information on the importance of hypertension as an ischemic risk factor, decreases in afterload pressure have potential therapeutic application. Recently, Dr. Schaffer’s laboratory found that an abrupt decrease in afterload pressure during reperfusion provides more protection against ischemia-reperfusion injury than post-conditioning. This finding raised the novel idea that an ischemic insult can benefit from a simple intervention (pressure unloading) that has not been previously considered.

Request for Nominations of Fellows

The Academy is requesting nominations for the appointment of Fellows with distinguished careers in cardiovascular health care delivery, research and education. Since these fellowships are intended to recognize the long time services of individuals to cardiovascular community, it is important to highlight their major features of distinction in your nomination. Please send a one page summary of accomplishments for each nominee and it is understood that each nominator will obtain consent of the individual before submitting the nomination. All nominations will be vetted by their respective Sections of the Academy and the Section Officers will make their recommendations. These lists will then be sent to the Academy’s Executive Council for their rank order. Final selection of a limited number of individuals will be made by the Executive Committee. Please note that the number of Fellows will not exceed 250 at any given time.

Please send us your suggestions before August 1, 2009 care of Ivan Berkowitz via e-mail: ivan@mts.net.
Academy honoured Hideo Baba with Naranjan Dhalla Award

Hideo Andreas Baba was born July 14, 1962 in Hamburg, Germany. In 1981-1987 he attended Medical School, University of Ulm, Germany and in 1988 earned his MD, University of Ulm, Germany, with Prof. Dr. E. Vanek; Medical Clinik and outpatient Clinic, Infectious Diseases. During 1989-1991, he had a Grant of the DAAD and Monbusho (Postdoctoral Fellow), at Department of Internal Medicine, Jikei University, Tokyo, Japan. In 1998, he earned Board Certification in Pathology and in 2000, Habilitation, from University of Münster, Germany, with Prof. W. Boecker

His Professional appointments:
- 1988-1989 Residency, Institute of Pathology, Neukölln Hospital, Berlin, Germany
- 1991-1993 Research Fellow, Department of Cardiology, University of Düsseldorf, Germany
- 1993-1995 Research Fellow, Institute of Pathology, University of Aachen, Germany
- 1995-2002 Research Fellow, Institute of Pathology, University of Münster, Germany

Since 2002 Associate Professor (C3) for Transplantation Pathology and Vice Chair, Institute of Pathology, University of Duisburg-Essen

Award: 1998 Research Award from the German Society of Transplantation

Scientific achievements
1. Molecular and morphological alterations in chronic heart failure with heart remodelling and studies of reverse remodelling after mechanical support.
2. Signal transduction of different solid tumors in terms of patient survival and prediction of response to kinase inhibitors (small molecule drugs).

These studies lead to over 130 peer reviewed articles in scientific journals.

American College of Cardiology
International Service Award to Academy Fellow Prof. Shahryar Sheikh

The International Service Award is given to an individual who, through their outstanding contributions to cardiovascular medicine and science, has significantly enhanced cardiovascular care throughout the world. Prof. Shahryar Sheikh has made an enormous contribution to cardiovascular medicine, not only in his home country of Pakistan but also globally through his leadership of the World Heart Federation. He is currently Professor of Cardiology at Allama Iqbal Medical College and Consultant Cardiologist at Doctors Hospital and Medical Centre in Lahore.

Prof. Sheikh was World Heart Federation (President 2007–2008). He received the Pakistan Government’s Pride of Performance Award in 1998 for his contribution to cardiovascular healthcare in Pakistan. He was President of the Asian Pacific Society of Cardiology from 1999–2003, President of the Pakistan Cardiac Society from 2002–2004 and is a Past Chairman of the Editorial Board of the Pakistan Journal of Cardiology. He served on the ACC’s International Committee from 2004–2007 and will be a member of the college’s newly established International Council from 2009–2010.

Request for Nominations for Medal of Merit

The Academy requests nominations for the 2009 “Medal of Merit”, the most prestigious award of the Academy “FOR OUTSTANDING ACHIEVEMENTS IN CARDIOVASCULAR EDUCATION AND RESEARCH”.

Previous recipients were truly extraordinary professionals: Michael DeBakey, Richard Bing, Edwin Krebs, Robert Furchgott, Eugene Braunwald, Robert Lefkowitz, Sir John Vane, James Willerson, Robert Jennings, Sir Magdi Yacoub, Sir George Radda, Victor Dzau, Louis Ignarro, Sen. Wilbert Keon, Jutta Schapper, Nirmal Ganguly, Salvador Moncada, Wolfgang Schaper and Howard Morgan. It is thus important to nominate individuals of great prestige and high distinction. All nominations will be rank ordered by the Executive Council and only one or two people will be chosen by the Executive Committee of the Academy.

Please send to ivan@mts.net before August 1, 2009, your nomination on one page to include a paragraph to highlight their achievements and details of their affiliation and address. Also, please obtain from your nominee their approval of your presenting their name.

Thank you in advance for your participation in this most important initiative.
Keld Kjeldsen was honoured with Academy Distinguished Service Award

Dr Kjeldsen was Born June 10 in 1952 in Aarhus, Denmark. He earned his M.D. in 1979; became a Specialist in cardiology in 1994 and internal medicine 1995; chief physician, The Heart Centre, Rigshospitalet, 1996-2003; chief physician, Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen 2003-2008; chief physician, Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen and Bornholms Hospital 2008-.

His Awards include:
Keld has published a total of 193 papers, her of 29 within the last 5 years. Publications are within the following areas: Na,K-ATPase in heart and muscle, vaccinology, cardiological genetics, clinical cardiology, and education. Total number of citations is at present around 2,750.

His books:

Other scientific activities:
Have given lectures (total of 72) and posters (total of 61), been chairman, and organiser at scientific meetings and conferences. Member of editorial boards of journals. Reviewer at journals and boards. Member of scientific societies and associations. Nucleus member and treasurer of Working Group on Drug Therapy in European Society of Cardiology. Executive Secretary for Academy of Cardiovascular Sciences Europe. Member of board of European Society of Cardiology Council on Basic Cardiovascular Science. Member of 4 European Society of Cardiology Guideline committees. Head of research laboratory. Scientific mentor for doctors and students.

Teaching skills:
Pre- and post-graduate teaching within the areas of cardiology, medicine and research (total of around 2500 confrontation hours). Chairman and organiser of courses (total of around 250).

Clinical skills:
General cardiology with special interest in infections in cardiology (endocarditis), heart failure, arrhythmia, and genetic cardiology. Internal medicine. Acute medicine.

Administrative skills:
Organisational and administrative tasks nationally and internationally.

---

INTERNATIONAL ACADEMY OF CARDIOVASCULAR SCIENCES

President: Sir Magdi Yacoub, Harefield, England
Past President: Stephen Valter, Newark, USA
Chairman, Board of Directors: Makoto Nagano, Tokyo, Japan
Executive Director: Naranjan S Dhalla, Winnipeg, Canada
Director of Development: Ivan Berkowitz, Winnipeg, Canada
Administrative Assistant: Eva Little, Winnipeg, Canada
Director of Finance: Nobuakira Takeda, Tokyo, Japan
Director of Education: Pawan K Singal, Winnipeg, Canada

Director of Scientific Affairs: Grant N Pierce, Winnipeg, Canada
Director of Corporate Affairs: Ian MC Dixon, Winnipeg, Canada
Director of Public Affairs: Lorrie A Kirshenbaum, Winnipeg, Canada
Director of Health Care: Alan Menkis, Winnipeg, Canada
Director of Health Research: Nilanjana Maulik, Farmington, USA
Director of Clinical Research: David Brasil, Belo Horizonte
Director of Academic Affairs: Ramesh Goyal, Vadodara
Director of Exchange Programs: Jan Slezak, Bratislava
Deaths from Heart Disease in Canada Decreased 30%: 10-year National Study

Rates of death and hospital admissions for cardiovascular disease declined 30% over a 10-year period in Canada, according to a new study in CMAJ (Canadian Medical Association Journal), pointing to successful efforts to prevent heart disease, the leading cause of death globally. However, for the first time, more women than men are dying of cardiovascular causes.

The study, the first of its kind in Canada, looked at data from the Canadian Mortality Database, Statistics Canada’s national death registry which contains information on the cause of all deaths in the country. It also looked at hospital admissions for heart attacks, heart failure and stroke.

A major finding was the rapid decline in death rates from heart attacks, with 4000 fewer Canadians dying from acute myocardial infarction in 2004 than in 1994. This could reflect declines in risk factors such as smoking and increased use of statins to control cholesterol.

However, the study showed high rates of death and hospital admission related to cardiovascular disease in elderly women. “This highlights the need for increased investment in education and research on cardiovascular health and disease in women,” wrote Dr. Jack Tu from the Institute for Clinical Evaluative Sciences (ICES) and coauthors.

The authors caution that despite the 30% decrease, “these findings are not grounds for complacency. They suggest that previous efforts to prevent cardiovascular events have been successful, but in many cases they may have delayed the occurrence of such events until people are older and potentially more difficult to treat.”

In a related commentary, Dr. Simon Capewell and Dr. Martin O’Flaherty from the University of Liverpool, United Kingdom, write that global reductions in cardiovascular disease are due to success in reducing risk factors as well as treatment of heart disease. They caution that patients with cardiovascular disease in the future will be older and more challenging to treat.

“Prevention, therefore, becomes vital because over 80% of premature cardiovascular disease is avoidable,” stated the authors. Promotion of smoking cessation, healthier diets and physical activity is crucial in addition to medications that control blood pressure and cholesterol.

Stig Haunsø was presented with Academy Lifetime Achievement Award

Stig Haunsø, MD, DMSc, FESC. He was born in Denmark 8th February, 1943, achieved his MD degree in 1971 from University of Copenhagen. He went through training in Internal Medicine and Cardiology 1971 – 1983 at different University Hospitals, affiliated to University of Copenhagen.

He achieved DMSc in 1983 from the University of Copenhagen (Regulation of coronary blood flow). In 1983 he became specialists in Internal Medicine and in Cardiology in 1984.

Since 1988 he has been a Professor of Internal Medicine at University of Copenhagen and from 1988 to 1997 Head of Department of Medicine B, Rigshospitalet, Copenhagen University Hospital.

In 1993 and 1994 he was Director of the Heart Centre, Rigshospitalet, Copenhagen University Hospital.

Among Stig Haunsø’s many positions, he has been Board member of the Danish Society of Cardiology, Chairman of Society of Theoretical and Practical Therapy, Chairman of organizing Committee of ISHR, XV European Section Meeting, Copenhagen, Chairman of the Working Group of Coronary Microcirculation, European Society of Cardiology, Boardmember of The Danish Heart Foundation, Boardmember of Danish Cardiovascular Research Academy (DaCRA), Boardmember of The International Society for Heart Research (ISHR), Board member of three large private research councils, Director of Laboratorium of Molecular Cardiology, Rigshospitalet (LMC), Director of Copenhagen Heart Arrhythmia Research Centre (CHARC) and Board member of The Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC).

Among Stig Haunsø’s publications is 133 papers in peer reviewed journals about experimental and clinical cardiovascular topics. 30 papers last five years. About 36 book chapters and 7 books. And on top being the Editor of “Medicinsk Kompendium, 16th edition, 2004”, “Medicinsk Kompendium Lommebog 2005” and “Medicinsk Kompendium, 17th edition, 2009”.

A wide network of peers within Stig Haunsø’s field has been established around the world. His research interests are coronary and peripheral microcirculation, integrated molecular physiological approach to experimental myocardial hypertrophy, heart failure and arrhythmia, Molecular genetics of arrhythmias.

ADVANCES IN HEART HEALTH

Deaths from Heart Disease in Canada Decreased 30%:
10-year National Study

Adapted from materials provided by Canadian Medical Association Journal
Dr. Louis Ignarro visited St. Boniface

We were honoured to welcome to Manitoba, 1998 Nobel Laureate Dr. Louis Ignarro on May 29 and 30, 2009. Indeed, his visit had originally been planned to present to Dr. Ignarro his 2007 “Medal of Merit”, the most prestigious award of the Academy "FOR OUTSTANDING ACHIEVEMENTS IN CARDIOVASCULAR EDUCATION AND RESEARCH" and Fellowship in the Academy. His busy schedule had led to the Award being delivered before he could accept it personally.

To enjoy Dr. Ignarro’s Lecture and his Public Presentation, please visit: [http://sbrc.tv/1.aspx](http://sbrc.tv/1.aspx)

Dr. Ignarro was so very impressed during his visit by the cardiovascular facilities and quality of investigators in Manitoba that he stated “If I had to develop a cardiovascular or any type of research institution at this stage of my career, I would pattern it upon what I have seen at the Institute of Cardiovascular Sciences in Winnipeg.”

---

Canadian Institute of Health Research’s Young Investigators Forum

Following on the success of three Young Investigators (YI) Forums in Winnipeg, the 2009 YI Forum was held in Ottawa May 21-23, 2009. It was organized by the CIHR’s Institute of Circulatory and Respiratory Health was a great training and educational meeting. The YI Forum provided me an opportunity to discuss my research with the experts in the area and learn about different career options as a Post-doctoral fellow. The conference program agenda was well organized and divided into different interactive and informative sessions. I really liked the part of “Networking Lunch with Mentors” which provided a chance to all the young fellows to discuss the overall prospective of their career in a relaxed environment with different mentors. I had the privilege to have lunch with Dr. Peter Liu and was impressed by his passion to further promote the cardiovascular health research in Canada. It was also interesting to know the personal viewpoint of Dr. Lisa Cameron, Assistant Professor, University of Alberta, in the session of CIHR Operating Grants: Peer Review, Selection Process and Funded Research. She emphasized that grant writing is a form of art and you have to convince people that your ideas can be funded. She advised that the young fellows should be persistent and focused on their area of research. Dr. Andre Marette of Quebec Lipid Research Center, University of Laval, presented an interesting talk about the obesity, diabetes and cardiovascular risk complications. He suggested that the outcome from bench to bedside can come efficiently only if all the basic and clinician scientists work on a collaborative atmosphere. Mr. Stephen Samis from Heart and Stroke Foundation of Canada (HSFC) informed the young fellows about the funding opportunities by HSFC, in addition to CIHR. I had the chance to attend Dr. Brenda Brouwer’s (Queens University) workshop entitled “Preparing and Writing Your Grant Application”. She emphasized on three aspects while working on the grant which include stay positive, stay focused and stay current in your knowledge. In the workshop of Careers in Government, Dr. Helen Johansen (Statistics Canada), Dr. James Richards (National Research Council), Dr. Howard Morrison (Public Health Agency of Canada) and Mr. Gerard Etienne (Health Canada) provided the knowledge about a wide variety of career options for PhD students as well as Post-doctoral fellows who would like to work for Government of Canada. The Friends of CIHR session about Global Heart and Lung Health: the Challenges, Opportunities
Prestigious French Award for Heart Research Won by Academy Fellow Eric Olson

Dr. Eric Olson, chairman of molecular biology at UT Southwestern Medical Center, has been awarded the Institut de France’s prestigious Lefoulon-Delalande Foundation Grand Prize for his work on gene regulation in the cardiovascular system.

The prize has an international reputation as the most prestigious award in cardiovascular research. The award of about $664,000 (500,000 euros) will be presented June 10 in France by French Prime Minister Francois Fillon and the president of the Institut de France.

“I consider this award one of the highest honors of my career,” Dr. Olson said. “It’s a wonderful recognition of the many scientists in my lab from throughout the United States and around the world who have contributed to this effort. They really deserve the credit.”

Much of what is known regarding cardiac gene regulation can be traced directly to Dr. Olson’s pioneering work. His research is regarded as a major step in finding genetic targets for treatment of congenital heart defects and adult heart disease, and it has illuminated the fundamental principles of organ formation. Equally important is his demonstration that many of the genes that control heart formation are called into play in the adult heart under pathological stress.

“Dr. Olson’s discoveries have provided profound new insights into cardiac development and substantially advanced our understanding of altered cardiovascular function in disease,” said Dr. Daniel K. Podolsky, president of UT Southwestern. “Dr. Olson exemplifies the scientific creativity of our faculty which serves as the foundation for UT Southwestern’s international reputation as a center of research, discovery and innovation.”

Dr. Olson studies how the heart and blood vessels form, how they rebuild themselves after injury, and how genetic mutations and stress can cause heart disease. He and his team have discovered networks of genes that orchestrate the formation of the heart and have shown how inherited genetic mutations in these genes cause congenital heart disease, the most frequent form of birth defect.

Most recently, Dr. Olson has turned his attention to distinctive forms of ribonucleic acid called microRNAs, chemical cousins of DNA, which are increasingly recognized to activate, turn off or fine-tune various functions in cells.

Several novel therapeutics based on Dr. Olson’s research are currently in development.

Dr. Olson is director of the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer and the Nearburg Family Center for Basic Research in Pediatric Oncology. He holds the Pogue Distinguished Chair in Research on Cardiac Birth Defects, the Robert A. Welch Distinguished Chair in Science and the Annie and Willie Nelson Professorship in Stem Cell Research.

Dr. Olson is a member of the National Academy of Sciences, the Institute of Medicine and the American Academy of Arts and Sciences. He serves as a consultant to miRagen Therapeutics, a biotechnology company that he co-founded.

His numerous honors and awards include the Pollin Prize for Pediatric Research and the Pasarow Award in Cardiovascular Medicine. In addition, he received the Outstanding Investigator Award from the International Society for Heart Research and an inaugural Distinguished Scientist Award from the American Heart Association. He also was awarded the AHA’s National Research Achievement Award for work that the organization described as having “redrawn battle lines in the fight against disease.”
North American Section President Navin Nanda Announces New Appointments

**VICE PRESIDENT:** Dennis “Ben” McNamara, New Orleans LA

**SECRETARY GENERAL:** Steve Schaffer, Mobile, AL

**TREASURER TO FINANCE SECRETARY:** Krishna Agrawal, New Orleans LA

**PAST PRESIDENT:** Karl Weber, Memphis, TN

**COUNCILORS:**
- Kul Aggarwal, Columbia MO
- Dipak Das, Farmington, CT
- Nilda Espinola-Zavaleta, Mexico City
- Vishal Gupta, Kalamazoo MI
- Nilanjana Maulik, Farmington, CT
- Suneet Mittal, New York NY
- Sharon Mulvagh, Rochester MN
- Hilda Peralta-Rosada, Merida City, Yucatan
- Hanumanth Reddy Little Rock AK
- Debasish Roychoudhury, New York NY
- Rakesh Sharma, El Dorado AK
- M.A.Q. Siddiqui, Brooklyn, NY
- Vibhuti, Singh, St. Petersburg FL
- Daniel Villarreal, Syracuse, NY

**ADVISORS:**
- Inder Anand, Minneapolis MN
- Mark Entman, Houston TX
- Keith Ferdinand, Atlanta GA
- Gary Lopaschuk, Edmonton AB
- Claude Lenfant, Vancouver, WA
- Jawahar Mehta, Little Rock AK
- William Weglicki, College Park MD

Dr. Nanda has made arrangements for a unique event during the AHA Scientific Sessions in Orlando and welcomes participation: American Association of Cardiologists of Indian Origin (AACIO) has agreed to have involvement by International Academy of Cardiovascular Sciences North American Section (IACVS) for their meeting on Sunday, November 15, 2009 in Orlando, Florida.

**Abstract Guidelines for AACIO/IACVS (North American Section)**

1. Assign one of the following categories to your abstract and place at the top above the abstract title: Basic Science, Preventive and Imaging Cardiology, Interventional and EP Cardiology

2. Maximum 2 abstracts per author.

3. The following will not be considered for the AACIO/IACVS Young Investigator Awards (YIA): a) Abstracts from previous Awardees, b) Abstracts already presented or accepted for presentation, c) Abstracts already published (in part or as a full manuscript) or accepted for publication.

4. Submitters must be a) Residents/Fellows in cardiology or cardiology related field or b) have a research position in cardiology or related field or c) if a faculty, must have completed their Residency or Fellowship program within 5 years of submission. Include the contact information for the submitting author in the email message; do not include on the abstract.

5. Abstract format: Word document, single space, limited to one page of text, font not less than 10 point. If graphs, charts or figures are included, the abstract may go to a second page only to accommodate the graphs/charts/figures. Abstract should contain the Title of the Abstract followed by the names and degrees of all authors (underline the submitting author’s name) and their affiliation(s), then a blank line followed by the abstract. Abstracts not submitted in this format will be returned for correction or rejected.

6. Abstracts must be submitted as an email attachment to nanda@uab.edu and will not be accepted if sent to a secure site or other internet services for downloading.

7. For abstract submission or any queries, contact Navin C. Nanda, MD, office phone: 205-934-8256; email nanda@uab.edu

8. A total of 3 Awards, each for $1000, will be given. Awardees need to be present on November 15, 2009 to receive award and each will be given 5 minutes to present their abstract.

Robert Furchgott died at 92 in Seattle

Robert Furchgott, who died on May 19, 2009 aged 92, was a Nobel Prize-winning scientist whose research into the effect of the gas nitric oxide as a blood vessel relaxant led to the development of revolutionary impotence treatments such as Viagra.

With his colleagues Louis Ignarro and Ferid Murad, Furchgott showed that nitric oxide – known primarily as an air pollutant from cigarettes and car engines that contributes to smog – plays a vital role in the human cardiovascular system, regulating blood pressure and circulation.

The three researchers earned the Nobel Prize for physiology in 1998, with the Swedish academy stressing that it was the first time scientists had proved the critical effects of a gas on biochemical functions in the human body.

The discovery of the effect of nitric oxide, a colourless and odourless gas, on the relaxation of blood vessels marked a critical stage in the development by the Pfizer company of the erectile dysfunction drug sildenafil, which it markets under the name Viagra.

When the little blue pill was approved by the US Food and Drug Administration in 1998 as a treatment for erectile dysfunction it became enormously popular, overturning perceived social taboos against treating such a condition, with some 35 million men worldwide soon using the drug.

Robert Francis Furchgott was born in Charleston, South Carolina, on June 4 1916, and as a young man developed a passion for the natural sciences.

He graduated from the University of North Carolina with a Chemistry degree and earned a doctorate in Biochemistry from Northwestern University in 1940. He then worked for many years at the State University of New York, among other colleges, and continued carrying out research and teaching into his eighties, despite being partially retired.

In 1978 he accidentally discovered an element in endothelial cells that relaxes blood vessels, describing it as “endothelium-derived relaxing factor”, or EDRF. Eight years later he worked out that EDRF was in fact nitric oxide.

During his Nobel acceptance speech, Furchgott noted the irony that Alfred Nobel, celebrated for his work with nitroglycerine and dynamite, had suffered from angina, the insufficient flow of oxygenated blood to the heart, for which he was prescribed nitroglycerine, itself a known blood vessel dilator.

Furchgott pointed to the “seemingly fated progression” from the creation of dynamite to his own discovery of the molecule in nitroglycerine responsible for the dilation of blood vessels that would help people with the same condition as Nobel.

In 2002, the International Academy of Cardiovascular Sciences awarded its “Medal of Merit”, the most prestigious award of the Academy “FOR OUTSTANDING ACHIEVEMENTS IN CARdiovascULAR EDUCATION AND RESEARCH” to Robert Furchgott.

Dr Furchgott’s wife and three children survive him.
SEE YOU IN RIO!

October
29th - 31th
2009

Scientific Forum XIX
International Congress of Cardiovascular Sciences

Rio de Janeiro - RJ
Barrada Tijuca

14th South American Meeting Int Academy Cardiovascular Sciences
International Congress of Extracorporeal Circulation
XXVII Brazilian Congress on Extracorporeal Circulation
Ecumenic Forum XI
Am Soc Angiolog Braz Chapter - V Internat Meeting
V Brazilian Meeting of Cardiology for the Family
Club Mitrale South Amer Session - III International Meeting
VI Brazilian Congress of Student’s Leagues of Cardiovascular Sciences

Call for Abstracts: www.forumcientifico.com

Second International Symposium on Adipobiology and Adipopharmacology (ISAA)
23-25 October 2009, Varna, Bulgaria
For information, please contact: chaldakov@yahoo.com